SEMICONDUCTOR

AALIF

User Guide

ML Embedded Evaluation Kit

Version 2.1

User Guide www.alifsemi.com
AUGDO0011 v2.1 October 2023

file:///C:/Users/SteveSharp/Documents/Alif%20Semi/templates/www.alifsemi.com

/‘ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

Table of Contents

INEFOAUCTION .ttt ettt et e s bt e s bt e she e s a bt st e et e e bt e beesbeesaeeenteenbeenbeesaeesanenas 3
Required Hardware and SETUD........ii ittt e e e et e e e s te e e e ssabe e e e sabeeeeenaseeeesnnsseeenan 3
Power and Serial POrt Cable.........io it st 3
Required SOftWAre and SETUPuiii it e e et e e e e satr e e e s ataeeeeaasseeesasseeesansseeesansreeenan 3
ViIrtual IMACRING SELUP .oeiieiiie ettt e e e e e e e st e e e e abbae e s eabaeeeenbaeeeennbaeeeennreeeeennsenas 4
8L UT oY U Y =l U o SRR 4
TaT = | 1 Vi To T o 1 SRR 5
Arm ClLang Compiler (v6.18) setup — OPLION 1 ..cccviiiiieeiiieciee ettt stee e rtre e s te e e sare e sre e eaaeeearneenes 5
Arm GNU GCC Compiler SETUP — OPLION 2...eciieiiieeciiiee ettt et e et e e e earee e e eate e e e esabaee s esabaeeeesareeesennsenas 6
STV o T g Ve o TV Y =R o= K== o) o] [[or=Y o] ST 7
1. Common SEtup fOr all Al/IMIL USE-CaSES:ccceeirerirreereeireesteesteesreeireesreesreesseesseessseeseesseessesssassssessesns 7

2. Building the Key Word Spotting (KWS) use-case for M55-HE COre.ccccvieiieercreeecieesieeeiiee e 8
Using ARM Clang TOOICh@IN: ...cc..eeieii et ettt e e e et e s e aba e e e e enbee e e e abaeeeennrenas 8
(U1 Y = €] \ LU 16 @ o To] Uol s - |1 A USRS 8
3. Building the Image Classification (IC) use-case for M55-HP COre.ccoooviieiiiieieciiieee e 9
Using ARM Clang TOOICh@IN: ..ciiiiiieei et et e e e s e e e e e e e e e sbee e s esabaeeeenareeas 9
(61 Y - €]\ LU 1 @ @ o To] [ol s - |1 A SRR 9
4. Building the Generic Inference Runner use-case for M55-HP COre.........ccocceeeeiiieeecciieeeecciiee e, 10
Using ARM Clang tOOICNAINcc.eiiie ettt e e et e e e e e bt e e e e ebre e e e snraeaesnraneesnnes 10
61 Y = €1\ LU 1 @ @ o] o] o =11 [UUPPN: 11
Running the Applications Standalone without DebUEEErScccuviiiiiiiii i 12
(0] o) A To] o L3 R PRSPPI 12

(0]) dTo] o LY AU SRRSO 12
KWS USQEE NOTES.....ciiiiiiiiiiiieiieieeee e eeeeee et e et e e e eeeeeeeeeeeeeeeeee e e s e eeee e e e e e et e e e e e s et e e e e e e e aeseeeaeaseeeeaeeeeeeeeeaeeeeeeennananrnes 15
FUPther INFOrMAtioN co..ceieeieiee ettt st sttt e sb e sbeesaresane s bt e b e nns 16
TESTEA USE CASES ..uveiueieiieriieiiie ettt ettt sttt et e b e b e s bt sae e st e e e e bt e s bt e sbeesatesabe e be e b e e beesmeesmeesnneenneen 16
R oTU T AN o o] [ot T a oY o I = 11 F= o [T U EERROt 16
Deploying pre-built application binaries to the AppKit (Windows OS)cccceeeeiiiieeeiiiee e 16
FAN [2 oY=Tol ¥ i Toll o YU] (o oY o] u o -3 PSP 18
-DROTATE_DISPLAY=<0{90| 1802703 ..c..erierterieeiinteetentieieentesteetestesstebesieete st st e seesaeensesbeemeesbesaeenes 18
“DGLED_UIZKON [OFF> oo et e e s et sees s seeseeseesesessesesessesassesessesseseeseseneeseesenaesenesan 18
SDCONSOLE_UARTES2 [45 ettt et et ee e ses e ee et esneseeese e e sesaseseesaesessaseneeasessesasees 18
-DLINKER _SCRIPT _INAIME ..ottt ettt e e e ettt e e e e e ettt e e e e s e s abbbeeeeeeesesannsbeeaeeeesesannsnes 18

[DTo Yol 0] g aT=T ol o 11 (o] o AP PPTPPPPPPPPPPPPPRE 19

User Guide 5

AUGDO0011

SEMICONDUCTOR

/‘ ALIF ML Embedded Evaluation Kit

Introduction

This is a brief set of instructions to some Al/ML use-case demos on a single Cortex-M55 core with Ethos-
U55 NPU.

We will show building three applications: a Key Word Spotting (KWS) application which runs on the
Cortex-M55 High-Efficiency core (H55-HE / M55_1), an Image Classification application that runs on the
CortexM55 High-Performance core (M55-HP / M55_0), and a generic “inference runner” application
running on the M55-HP core.

The KWS application on M55-HE continuously listens to the audio input from the built-in microphones
on the Alif base board. When the word “Go” is recognized, a command is sent to the M55-HP core to
initiate the image classification application.

The image classification application uses the camera to detect objects and displays the image output of
the camera to a display along with the results of the image classification in real time. The M55-HE
continues to listen for keywords and upon detecting the word “Stop”, a command is sent to the M55-HP
core to stop the image classification.

The inference runner application provides a way to easily take a model and have it operate on a data
buffer containing data collected from any of the sensors on the Beta Al/ML AppKit such as the camera,
microphones, or IMU.

We will show how to run individual applications on the Beta Al/ML AppKit without a debugger probe as
well as running the combination of the KWS + Image Classification applications where the KWS
application starts and stops the Image Classification application.

Required Hardware and Setup
o Alif Beta Al/ML AppKit with camera and display
e Micro USB cable

Follow the instructions in the Beta Al/ML AppKit Quick Start Guide [link here] to power up your AppKit
and determine which virtual COM port is connected to the SEUART that is used for programming the
chip.

Power and Serial Port cable
Connect a USB cable between your PC and the Al/ML AppKit at J1 (PRG USB) micro-USB connector.
This cable serves two purposes, it provides power to the AppKit along with two serial ports,

1. SEUART console

2. Debug consoles - UART2 (M55-HE) or UART4 (M55-HP) (jumper selected at “UART SEL SW”)

Required Software and Setup
e Ubuntu 20.04 LTS or Ubuntu MATE 20.04 LTS (link)

User Guide
AUGDO0011

https://alifsemi.com/download/AQSG0005
http://cdimage.ubuntu.com/ubuntu-mate/releases/20.04/release/

SEMICONDUCTOR

/‘ ALIF ML Embedded Evaluation Kit

e Oracle VirtualBox (link)
o Alif Security Toolkit (SETOOLS) Version 0.65.0

Virtual Machine Setup
NOTE: Set hard-disk size to atleast 100GB = 102400MiB
NOTE: add sudo:

Ssu-—

S sudo adduser [username] sudo

Reboot.
Follow the guide at this page to create an Ubuntu virtual machine using Virtual Box (link). You should
proceed far enough to install the VirtualBox Guest Additions. This enables USB support and allows for
using Arm DS to debug from within Ubuntu later in the guide. In the machine settings, under the USB
category, add the ULINKpro or J-Link debugger to your USB Device filters. After adding the USB device to
the filter, unplug the device and plug it back in again. The USB devices that are pulled into the Virtual
Machine are not available in Windows while the box is checked. To restore the functionality to
Windows, uncheck the box, unplug the device, and plug it back in.

\i' System Enable USB Controller

X () USB 1.1 {OHCI) Controller
E‘ Display

(O USB 2.0 (OHCI +EHCI) Controller
Storage @ USB 3.0 (HCT) Controller
(Dj Audio USB Device Filters
@ Network ﬁ
@ Serial Ports Keil ULINKpro [0100]
Intel Corp. [0002]

,& — VIA Labs, Inc. (0300]

Keil ULINKpro [0100]
SEGGER J-Link [0100]
Intel Corp. [0002]

VIA Labs, Inc. [0300]
SEGGER J-Link [01100]

| =N =N tb 8&

Ubuntu Setup
With Ubuntu running, run the below commands to get the environment ready for development.

S sudo apt update
S sudo apt upgrade -y
S sudo apt install libncurses5 libc6-i386 lib32gccl lib32stdc++6 lib32z1
S sudo apt install curl dos2unix python-is-python3
S snap install cmake —classic
At the time of writing, the following software versions were used:
e Python 3.9
e Pip22.1.2
e cmake 3.23.2
e Option-1: Arm clang compiler toolchain.
e Option-2: Arm GNU GCC compiler toolchain.

User Guide
AUGDO0011

https://www.virtualbox.org/
https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox

/‘ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

Install Python3

We need python version 3.9 or higher for use with the latest vela compiler. You can download and
install python3 using the following command,
S sudo apt-get install python3.9 python3.9-venv libpython3.9 libpython3.9-dev

Verify Python3
S python3

Arm ClLang Compiler (v6.18) setup — Option 1
1. Start with downloading the .tgz file for Development Studio and then extract it.

Arm Development Studio 2022.0 Download 2022.0 for Windows 64-bit

Windows

DS000-BN-00000-r22p0-00rel1.zip (MD5 Hash: fBaee921abdeel3cebcTe2e3eB698d44) . .
Download 2022.0 for Linux 64-bit

Linux

DS000-BN-00001-r22p0-00relL.tgz (MD5 Hash: 63a84f2d57d638f1a650a30db964cc54)

Release Note #EULA B Documentation

2. Within the extracted folder is a shell script. Open a terminal window, navigate to the extracted
folder, and run the shell script.
3. Download the tar.gz file for Arm Clang Compiler and use sudo to extract it to /usr/local/bin/

S sudo tar xf ARMCompiler6.18_standalone_linux-x86_64.tar.gz -C /usr/local/bin

Release notes for Arm Compiler for
Release Notes
Embedded 6.15 Arm Compiler for Embedded Semlesd

) 6.18 (AArché4 Linux)
Arm Compiler for Embedded 6.18

Documentation
Arm Compiler for Embedded
6.18 (x86_64 Linux) Download

Arm Compiler for Embedded
se Management 6.18 (for Keil ® MDK) 25k
Utilities Third party licenses

Documentation

EULA

Arm Compiler for Embedded
6.18 (x86_64 Windows) Download
4. Addthe ARM license server to your environment (if applicable), example shown:
S sudo sh -c "echo export ARMLMD_LICENSE_FILE=PORT@IPADDRESS > /etc/profile.d/arm-
license.sh"
5. After extracting Arm Clang compiler, we will need to add it to the path, as example shown
below
S sudo sh -c "echo export PATH=/usr/local/bin/ArmCompiler6.18/bin:SPATH > /etc/profile.d/arm-
compiler.sh"
6. Logoutand then log in for the above environment changes to take effect.

User Guide
AUGDO0011

/‘ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

Arm GNU GCC Compiler Setup — Option 2
1. Search on Google and download the GNU Arm Embedded Toolchain for the file shown.

https://developer.arm.com/downloads/-/gnu-rm

Select item #3.
2. You may ignore the note on Arm’s webpage that the compiler is deprecated. Using the latest

release may work but has not been tested.

gcc-arm-none-eabi-10.3-2021.10-x86_64-linux.tar.bz2

Linux x86_64 Tarball
MD5: 2383e4eb4ea23f248d33adc70dc3227e

3. Extract the downloaded tar.bz2 file and use sudo to extract it to /usr/local/bin

S sudo tar xf gcc-arm-none-eabi-10.3-2021.10-x86_64-linux.tar.bz2 -C /usr/local/bin

4. Add it to the path, as shown

S sudo sh -c "echo export PATH=/usr/local/bin/gcc-arm-none-eabi-10.3-2021.10/bin:SPATH >

/etc/profile.d/arm-compiler.sh"
5. Logout and then log in for the above environment changes to take effect.

User Guide
AUGDO0011

https://developer.arm.com/downloads/-/gnu-rm

/\ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

Building the use-case applications
1. Common Setup for all Al/ML use-cases:

1. Access our public repository on Alif Semiconductor GitHub account,

https://github.com/alifsemi/alif ml-embedded-evaluation-kit
2. Clone the above repository to your PC.

S git clone https://github.com/alifsemi/alif_ml-embedded-evaluation-kit.git

3. Initialize and update the required submodules.

S cd alif_ml-embedded-evaluation-kit
S git submodule init
S git submodule update
4. Download and Setup required Al/ML resources.

S python3 set_up_default_resources.py --additional-ethos-u-config-name ethos-u55-
256
The above python command will take some time, around a few minutes. Python command
fetches and optimizes the needed Ethos models for all the use cases in the kit.

If you get errors right at the beginning, try doing the following and run the command again:
S sudo apt-get install python3-pip
S sudo apt install python3-venv

Delete the folder “resource-downloaded”.
Rerun the commands from step 4.

NOTE:
The instructions below are to build by default for the generation 1 Alpha2 Al/ML Application Kit. To build
for kits based on generation 2 devices, you have to add -DTARGET_REVISION=B to the CMAKE
command. This will build for TARGET_BOARD devkit_gen2. To build for appkit_gen2, set the
TARGET_BOARD=AppKit.
To build for DevKit for Gen2, the command would be:
S cmake -DTARGET_PLATFORM=ensemble \
-DTARGET_SUBSYSTEM=RTSS-HE \
-DTARGET_REVISION=B \
-DCMAKE_TOOLCHAIN_FILE=scripts/cmake/toolchains/bare-metal-armclang.cmake \
-DGLCD_UI=NO\
-DLINKER_SCRIPT_NAME=ensemble-RTSS-HE-TCM \
-DCMAKE_BUILD_TYPE=Release \
-DLOG_LEVEL=LOG_LEVEL_DEBUG ..

User Guide
AUGDO0011

https://github.com/alifsemi/alif_ml-embedded-evaluation-kit

/‘ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

2. Building The Key Word Spotting (KWS) Use-Case For The M55-HE Core.
1. Create a build directory for M55-HE core based applications.

S mkdir build_he
S cd build_he

Using ARM Clang Toolchain:
2. Configure the build using CMake.
S cmake -DTARGET_PLATFORM=ensemble \
-DTARGET_SUBSYSTEM=RTSS-HE \
-DTARGET_BOARD=AppKit_Alpha2 \
-DCMAKE_TOOLCHAIN_FILE=scripts/cmake/toolchains/bare-metal-armclang.cmake \
-DGLCD_UI=NO \
-DLINKER_SCRIPT_NAME=ensemble-RTSS-HE-TCM \
-DCMAKE_BUILD_TYPE=Release \
-DLOG_LEVEL=LOG_LEVEL_DEBUG ..

3. Build the Project using Make.

S make ethos-u-alif_kws -j
4. The output should be in /build_he/bin/ethos-u-alif kws.axf

NOTE: The debug console for this use-case will be UART2, and the jumper on the Al/ML AppKit
needs to be set accordingly as noted in the Beta Al/ML AppKit Quick Start Guide.

UART select jumpers set for UART2:

nx:é
i j* POWER LED
“ GND@

°
UART2
UART4 | . | P19

UART SEL SW

J2

Using GNU GCC Toolchain:
5. Replace bare-metal-armclang.cmake to bare-metal-gcc.cmake in step 2 above.

User Guide
AUGDO0011

/‘ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

3. Building The Image Classification (IC) Use-Case For The M55-HP Core.
1. Create a build directory for M55-HP core-based applications.

S mkdir build_hp
S cd build_hp

Using ARM Clang Toolchain:
2. Configure the build using CMake.

S cmake -DTARGET_PLATFORM=ensemble \

-DTARGET_SUBSYSTEM=RTSS-HP \

-DTARGET_BOARD=AppKit_Alpha2 \
-DCMAKE_TOOLCHAIN_FILE=scripts/cmake/toolchains/bare-metal-armclang.cmake \
-DCONSOLE_UART=4 \

-DCMAKE_BUILD_TYPE=Release \

-DLOG_LEVEL=LOG_LEVEL_DEBUG ..

These cmake options permit the default use of LCD and SRAM, which is okay since the HE
image has them disabled. The CONSOLE_UART=4 option avoids the HE image’s use of UART2

and could be omitted to run standalone HP applications.

3. Build the Project using Make.

S make ethos-u-alif_img_class -j

4. The output should be produced in build_hp/bin/ethos-u-alif img_class.axf

Using GNU GCC Toolchain:
5. Replace bare-metal-armclang.cmake to bare-metal-gcc.cmake in step 2 above.

User Guide
AUGDO0011

SEMICONDUCTOR

/‘ ALIF ML Embedded Evaluation Kit

4. Building the Generic Inference Runner use-case for M55-HP core.

1. Create a build directory for M55-HP core,

S mkdir build_hp_infrun
S cd build_hp_infrun

Using ARM Clang toolchain
2. Add TFLite custom model,
a. Ifyou already have a vela optimized custom model file (.tflite), then copy it into
below directory,
S cp custom_model_vela H256.tflite \
<path-to-repo>/resources_downloaded/inference_runner
b. Otherwise, download your non-Vela TFLite model (from https://github.com/ARM-
software/ML-zoo/), ex: har_int8.tflite.
i. Copy itinto below directory,
S cp har_int8.tflite \
<ml_demo_root>/models
NOTE: avoid the ‘resources_downloaded’ directory, as we don’t want to accidentally
wipe it out.
c. Runvela compiler on it, for the HP:
S . resources_downloaded/env/bin/activate
S cd <ml_demo_root>/models
S vela --accelerator-config=ethos-u55-256 \
--optimise Performance \
--config ../scripts/vela/default_vela.ini\
--memory-mode=Shared_Sram \
--system-config=Ethos_U55_High_End_Embedded \
--output-dir=. har_int8.tflite
NOTE: for the M55-HE core, change u55-256 to u55-128.
NOTE: you could also use a different INI file to try to tune for your system.
d. This will produce a vela optimized tflite file under,
<ml_demo_root>/models/har_int8 vela.tflite
e. Rename this with a suffix H128 or H256 to indicate which Ethos-U55 core you built it
for.
S mv har_int8_vela.tflite har_int8_vela_H256.tflite

3. Whether you prepared the model yourself, or are pointing at another pre-optimized model,
add the CMake option -Dinference_runner_MODEL_TFLITE_PATH=<path-to-
model>/custom_vela_H256.tflite.

User Guide

AUGDO0011 10

https://github.com/ARM-software/ML-zoo/
https://github.com/ARM-software/ML-zoo/

/‘ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

4.

The

User Guide
AUGDO0011

Configure the build using ‘CMake’,

S cmake .. \
Dinference_runner_MODEL_TFLITE_PATH=<path_to_model>/models/har_int8_vela_H256.t
flite

-DUSE_CASE_BUILD=inference_runner \

-DTARGET_PLATFORM=ensemble \

-DTARGET_SUBSYSTEM=RTSS-HP \

-DTARGET_BOARD=AppKit_Alpha2 \
-DLINKER_SCRIPT_NAME=ensemble-RTSS-HP-infrun \
-DCMAKE_TOOLCHAIN_FILE=scripts/cmake/toolchains/bare-metal-armclang.cmake \
-DCMAKE_BUILD_TYPE=Release \

-DLOG_LEVEL=LOG_LEVEL_Debug

Build the project using ‘Make’,
S make -j

Open Tera-Term or any other serial port console app. Connect to UART4 (for M55-HP) or
UART2 (for M55-HE). Configure serial port settings to 115200, 8N1.

Reset the board and review the output on the serial console.

Using GNU GCC toolchain

Follow the same steps as above, except in step 4. Change the following in CMake command,
-DCMAKE_TOOLCHAIN_FILE=scripts/cmake/toolchains/bare-metal-gcc.cmake \

-D DLINKER_SCRIPT_NAME=ensemble-RTSS-HP-infrun \

output should be produced in build_hp_infrun/bin/ethos-u-inference_runner.axf

11

/‘ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

Running the Applications Standalone without Debuggers
Refer to the Alif Security Toolkit Quick Start Guide on how to download and install SETOOLS on your
platform.

The recommended <release-location> installation directories are:

Windows: C:\app-release-exec

Linux: /home/SUSER/app-release-exec-linux

After building the applications above, these steps will prepare them to be stored in the Alif device and
booted by the Secure Enclave automatically.
The SETOOLS make use of “.bin” files instead of “.axf” or “.elf” files.

Option-1
You can find the “mram.bin” file in the ‘build’ folder under .../bin/sectors/<use-case>/ folder.
Rename the ‘mram.bin' to appropriate use-case filename, found from the generated .axf filename,
Example:
S mv mram.bin ethos-u-alif _kws.bin
S cp ethos-u-alif_kws.bin /home/SUSER/app-release-exec-linux/build/images
Option-2
You will first need to convert the .axf file into a .bin file. Depending on the compiler option used to
generate the binary “.axf or .elf” file, you will need to use different commands.
If you followed Option-1 to install Arm DS and Arm Clang Compiler for Embedded, then use the
“fromelf” command. Or if you followed Option-2 to install the Arm GNU Compiler for Embedded, then
use the “arm-none-eabi-objcopy” command.

1. For KWS use-case:

S cd build_he/bin

$ fromelf --bin —output=ethos-u-alif_kws.bin ethos-u-alif_kws.axf
or
S arm-none-eabi-objcopy -O binary ethos-u-alif _kws.axf ethos-u-alif kws.bin

2. For Image Classification use-case:
S cd build_hp/bin
S fromelf --bin —output=ethos-u-alif_img_class.bin ethos-u-alif_img_class.axf
or

S arm-none-eabi-objcopy -O binary ethos-u-alif_img_class.axf ethos-u-alif img_class.bin

Copy the converted binaries (.bin file) to the following directory:
/home/SUSER/app-release-exec-linux/build/images

User Guide

AUGDO0011 12

/‘ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

The next step is to generate the binary ATOC image for the applications.
1. Create a new JSON file called

C\build\config\ with the following content.

"HE_Voice": {

"binary": "ethos-u-alif_kws.bin",
"version": "1.0.0",
"mramAddress": "0x80480000",
"cpu_id": "M55_HE",

"flags": ["boot"],

"signed": false

}

2. Create a second new JSON file called
/home/SUSER/app-release-exec-linux\build\config\ with the following
content.

"HP_Image": {

"binary": "ethos-u-alif_img_class.bin",
"version" : "1.0.0",

"mramAddress": "0x80008000",
"cpu_id": "M55_HP",

"flags": ["boot"],

"signed": false

}

3. Next, run app-gen-toc, from SETOOLS package in /home/SUSER/app-release-exec-linux, to
generate the package image, which will be written to the file AppTocPackage.bin in the build
directory. We will use the “-f” option to specify the input filename (kws_demo.json) for the
configuration file we just created. Execute this command:
> app-gen-toc.exe -f build\config\

S ./app-gen-toc -f build/config/

4. Finally, write the applications using the SETOOLS command,

> app-write-mram.exe -p
S sudo ./app-write-mram -p

NOTE: binaries written to MRAM must be 16-byte aligned or the write operation will fail. If you see a
warning in the SE Tools about the binaries not being 16-byte aligned, the “-p” option will pad the
binaries to be 16-byte aligned.

5. Repeat steps 3 & 4 for , to program the image-classification use-case
demo to M55-HP.

NOTE: Applications output debug messages to UART2 (M55-HE) and UART4 (M55-HP).

User Guide

AUGDO0011 13

/\ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

Running Keyword Spotting + Image Classification on dual-core (HE+HP) SoC
Once we have built and verified the Keyword Spotting (KWS) and Image Classification (IC) use-cases
individually on single-cores, we are now ready to program a dual-core demo, using the above generated

binaries.

1. Create a new JSON file called

/home/SUSER/app-release-exec-linux/build/config/ with the following
content.
{
"ICc": {
"binary": "ethos-u-alif img class.bin",
"version": "1.0.0",
"mramAddress": "©x80008000",
"cpu_id": "M55_HP",
"flags": ["boot"],
"signed": false
s
"KWS": {
"binary": "ethos-u-alif kws.bin",
"version": "1.0.0",
"mramAddress": "©x80480000",
"cpu_id": "M55 HE",
"flags": ["boot"],
"signed": false
}
}
2. Next, follow the steps from step #3 above to program the binaries to the Beta Al/ML AppKit.
User Guide

AUGDO0011 14

ALIF

SEMICONDUCTOR

ML Embedded Evaluation Kit

A

KWS Usage Notes

You should be able to run the application and see the below in the very first lines of output from UART2
NFQ} — Processor internal clock:

NF0Q - platform_init:

NFO
NF0
NFO
NF0
NFO
NF0
NFO
NF0
NFO
NFO

Cmd

Arch:
Driver:
MACs . cc:

DEBUG — EthosU IRGH#: 55,
— Ethos-ll device initialised
Ethos—-U version info:
vi.B.@a
vB.16.8
128
v@
Target system design:
ARM ML Embedded Evaluation Hit
Version 22.11.8 Build date:
Copyright 2021-2022 Arm Limited andsor its affiliates

stream:

complete

168808080H=

Handler:

AxA8E8a279

Enzemhle

Jan 24 2823 @ 13:25:49

The application will run in a loop listening to the microphones. It will report if the keywords from the
following list are spotted: “up”, “down”, “left”, “right
Correct behavior:)
Original sample stats: absmax

Y T}

, Y€s,

n u n U n U o

no”, “go”, “stop”, “on”, “off”.

=132, mean = -9
absmax = 28912, mean =

1273 <gain = 47 dB>

Mormalized sample stats:

Detection of “left” and “right” key words:
Original sample stats: absmax =
ormalized sample stats: abhsmax
DEBUG — Input tensor populated
reprocessing time = 6.961 mns

Inference time

= 2.787 ns

oztprocessing time = A.824 ns

INFO
INFOQ
INFO
INFO
INFO
INFO
INFO
INFO
INFOQ
INFO
Wl)

Fin

al results:

13, mean

-5

= 4872, mean

Total number of inferences: B

For
For
For
For
For
For
For
For

timestamp:
timestamp:
timestamp:
timestamp:
timestamp:
timestamp:
timestamp:
Fimestamp:

Incorrect behavior (mics not working):

23 .908062
23 .508002
24 .pB800A
245080062
25 .AB8ARA
25 .508062
26 .AA8ER0A
26 .508062

(inference
{inference
(inference
(inference
(inference
(inference
(inference
(inference

Original sample stats: abhsmax = B, mean

Hqgmqliaed sample stats:

User Guide
AUGDO0011

abhsmax =

15

HESEEEEE

8, mean

= —287? (gain = 52 dB>

Lettnleayn_,. score: B.7186

. up, score: B_HB6B759; the

D up, score: B.9225187; thr
left, :core: A.994687; t
left, :core: BA.983821; t

SUISGGTANN_,. SCOPe:

: _unknown_, score:

: _unknown_, score:

= 88 dB>

A

ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

Further information

Beyond the demo build described above, many other use cases and options of the upstream Arm ML
Embedded Evaluation kit should work on Alif hardware.

One easy alternative build is to replace the image-classification use-case on the M55-HP core with
object-detection (face-detection).

Tested use cases
Of the original ARM use cases the following are known to work:

kws

img_class

object_detection

VWW

inference_runner

noise_rejection

The following are known to not work:
asr (model too large)

New use cases have been added:
alif_kws (equivalent of kws with live microphone input)

alif_img_class (equivalent of img_class with live camera input)
alif_object_detection (equivalent of object_detection with live camera input)
alif_vww (equivalent of vww with live camera input)

Pre-built Application Binaries

You can find the pre-built application binaries for our “alif” use-cases at the link below,
Beta Al/ML AppKit Pre-Built Demos

The following applications are part of the package,

LVGL display demo — with Helium acceleration

LVGL display demo — without acceleration

LVGL music player demo — without audio, to demo Ul abilities
LVGL printer demo — to demo Ul abilities

Alif Image Classification+Keyword Spotting use-case.

Alif Object Detection use-case.

NOTES:
o

for Object Detection demo, you need to press the back button on the button of the
board for continuous detection.

For Image-Classification + Keyword Spotting demo, you need to speak in front of the
AppKit the words “stop” to stop the classification and “go” to run the classifications.

Deploying pre-built application binaries to the AppKit (Windows OS)
We have created batch scripts for Windows OS to make it easy to download the pre-built binaries to the

AppKit,

Connect the AppKit to the Windows PC with the micro-USB cable at port "PRG USB”.
Make sure the slide switch “POWER Sel SW" is set to “USB PWR"A red "POWER LED” will turn

ON.

User Guide
AUGDO0011

16

https://alifsemi.com/support/kits/ai-ml-appkit/

‘ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

- Onthe Windows PC, download the pre-build application binaries (AppKit_Demos.zip) to an
appropriate folder and extract the contents of the zip file.Read the "AppKit demos.pdf" file
contained in the extracted folder for instructions on the dependencies for the batch scripts.
Make sure you run “maintenance.exe -d” command from SETOOLS folder to select the 1% serial
COM port.

- Once the above steps are done, simply double-click the appropriate use-case batch file to
download the binary to the AppKit. The use-case demo will start running once the download is
complete. Sometimes it takes a few seconds longer for the demo to start.

- Open a serial port console application (ex: TeraTerm) and connect to the 2" serial COM port
that is detected by PC. Configure the serial port to 115200, 8N1 setting to see the debug log
messages. Most applications use COM2 for debug output except the image classification
application which uses COM4.

Putting jumpers on the two pairs of pins closer to the PRG USB socket selects UART2, while putting
jumpers on the two pairs of pins closer to the SoC USB socket selects UARTA4.

UART2 Selection UART4 Selection

€50
§lcs2 « |

TRIIP? B A
H @@ -

r [N mH@

RS4 CRI
Fol <5
I+ POWER LED

¥ GND@ f

. | UART2 , rGNDQ
UART4

UART, SEL SW.

User Guide

AUGDO0011 17

/‘ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

Alif-specific build options

There are several build options — these determine the behavior of the porting layer. Once these are set,
you can build multiple use cases in one build directory using these options. See original ARM
documentation for details of the upstream options. Alif has added extra options:

-DROTATE_DISPLAY=<0|90|180|270>
Rotates the display by the specified amount and reorganizes the Ul if necessary. 90 and 270 will be
appreciably slower. (Default is 0)

-DGLCD_UI=<ON|OFF>

Enables or disables the basic “GLCD” Ul emulating ARM’s MPS3 display. This is the display method of all
the original ARM use cases and alif live audio demos.. (Default is ON)

If running on two cores, one of the applications must have this disabled.

The Alif camera use cases switch over from the GLCD display to a full LVGL Ul, and the LVGL Ul functions
independently of this option — it can be turned off to save RAM.

-DCONSOLE_UART=<2|4>
Specifies which UART to use for console. (Default is 2)

-DLINKER_SCRIPT_NAME

Specifies a linker script/scatter file to use. The default is ensemble-RTSS-<HE | HP>, a layout which uses
both TCM and SRAMO/SRAM1.

If running on two cores, the M55-HE core must use the alternative ensemble-RTSS-HE-TCM layout which
uses only TCM. This will only fit the smallest use-cases such as kws or alif_kws, and GLCD_UI must be
disabled.

To fit in TCM the kws use case must have its activation area reduced using -
Dkws_ACTIVATION_BUF_SZ=0x20000. (This is already the default for alif_kws).

User Guide

AUGDO0011 18

/‘ ALIF ML Embedded Evaluation Kit

SEMICONDUCTOR

Document History

Version Change Log

1.0 Initial public release for targeting Beta Al/ML AppKit

2.0 Added options to build the designs for the DevKit Gen 2 board

2.1 Minor edits for clarity

User Guide

AUGDO0011 19

