

User Guide www.alifsemi.com
AUGD0012 v1.4 November 2023

User Guide

Getting Started with VS Code, GCC,
and J-Link Using CMSIS Toolbox

Version 1.4

file:///C:/Users/SteveSharp/Documents/Alif%20Semi/templates/www.alifsemi.com

Getting Started with VSCode, GCC, & J-Link

2

User Guide
AUGD0012

Table of Contents
1. Tools Installation ... 3

2. VS Code and CMSIS Toolbox configuration ... 8

3. Setting up your Alif Ensemble Development Kit ... 11

4. Opening a CMSIS Toolbox project with Visual Studio Code ... 12

5. Adding CMSIS Components to the application ... 16

Document History ... 17

Getting Started with VSCode, GCC, & J-Link

3

User Guide
AUGD0012

Introduction

The User Guide is designed to show how to set up a VS Code environment with the GNU tools including
GCC and GDB plus CMSIS Toolbox to do design combined with Segger J-Link for debugging when
targeting an Alif SoC on the Ensemble DevKit Gen 2.

If you have been doing work using VS Code + GCC for the Alif Beta Ensemble DevKit, you should create a
separate instance of VS Code for the new DevKit since several parts of the configuration are different.

This user guide shows how to set up a VS Code environment with the GNU tools and J-Link debugger
under Windows. The same overall process can be used to create a Linux environment by installing Linux
versions of the different tools listed and updating the paths appropriately in the different settings files.

1. Tools Installation
1.1. Begin by downloading Arm GNU Toolchain from https://developer.arm.com/downloads/-

/arm-gnu-toolchain-downloads. Select the executable from Windows -> AArch32 bare-metal

target category. Using the latest stable version is always recommended, however, this

document has been written and tested against version 12.2.Rel1.

1.2. Run the installer executable and make note of the location the compiler is installed into.

After the installation is completed, leave “add path to environment variable” unchecked.

1.3. Download the CMake version 3.26.0 (or newer) from https://cmake.org/download/. Select the

executable from Platform -> Windows x64 Installer. For convenience, the installer has also

been bundled with these instructions.

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://cmake.org/download/

Getting Started with VSCode, GCC, & J-Link

4

User Guide
AUGD0012

1.4. Run the installer executable and inside the installation wizard, select “Add CMake to system

PATH for all users”. This step is essential to make CMake visible from VS Code.

1.5. Download latest stable version of the J-Link Software (64-bit installer) from

https://www.segger.com/downloads/jlink/. This document has been tested with J-Link version

7.82c.

1.6. Run the J-Link installer and once again make note of

the installation directory specified.

1.7. Go to the Visual Studio Code website

(https://code.visualstudio.com/download) and

download .zip for x64 Windows environment. Using

.zip package will prevent VS Code from keeping its

settings on per-user or per-system basis, allowing

multiple installations to coexist without causing

clashes in configuration and extensions:

1.8. Unpack the VS Code .zip file to the installation

directory of your choice. It is recommended to keep

the path short for convenience.

https://www.segger.com/downloads/jlink/
https://code.visualstudio.com/download

Getting Started with VSCode, GCC, & J-Link

5

User Guide
AUGD0012

1.9. Inside the VS Code directory (Code.exe is present) create a folder named “data”. If present, VS

Code will use this folder to store all the configuration and extensions data, keeping your VS

Code installation fully self-contained and portable. This will allow you to have multiple

installations present on your system, if needed, without any clashes in the configuration.

1.10. Obtain version 1.7.0 of CMSIS Toolbox from Open CMSIS Pack Github:

https://github.com/Open-CMSIS-Pack/cmsis-toolbox/releases/tag/1.7.0. This document has

been tested with version 1.7.0 and later versions can produce errors during the build process.

Also, be sure to download the “amd64” version and not “arm64”.

1.11. It is recommended that the CMSIS tools, packs and configurations are kept together with the

VS Code installation to simplify configuration and improve portability. Inside the VS Code

folder (Code.exe is present) create folders “cmsis-toolbox” and “cmsis-packs”:

1.12. Extract CMSIS Toolbox archive downloaded in step 1.8 into the “cmsis-toolbox” directory.

Folders “bin”, “doc” and “etc” should be present immediately inside “cmsis-toolbox”.

1.13. Navigate inside the cmsis-toolbox/etc directory. This folder contains CMake templates for

building with various compilers. Duplicate GCC.10.3.1.cmake file and rename it to reflect the

version of the GCC compiler used (e.g.: GCC.12.2.1.cmake).

Getting Started with VSCode, GCC, & J-Link

6

User Guide
AUGD0012

1.14. Open the renamed duplicate in any text editor and modify path on line 7 (after

TOOLCHAIN_ROOT) with the path specified in step 1.2, followed by “/bin”. Only forward

slashes are supported in the path. Immediately below, change TOOLCHAIN_VERSION to the

number matching the GCC version installed earlier. For example:

1.15. Save and close the file.

1.16. Download the Ninja executable from https://github.com/ninja-build/ninja/releases. Create

folder named “ninja: inside the VS Code installation directory and extract the Ninja executable

into it:

1.17. Next, you will need to download version 1.0.0 or later of the Alif Security Toolkit. This can be

found on the Software & Tools page of the Alif website under Support [link here]. You will have

to log into the website with your Alif credentials to access this archive.

1.18. Inside your VS Code installation directory create an “alif-tools” folder and extract the Security

Toolkit into it.

https://github.com/ninja-build/ninja/releases
https://alifsemi.com/support/software-tools/ensemble/

Getting Started with VSCode, GCC, & J-Link

7

User Guide
AUGD0012

1.19. Download Git for Windows from https://git-scm.com/download/win:

https://git-scm.com/download/win

Getting Started with VSCode, GCC, & J-Link

8

User Guide
AUGD0012

2. VS Code and CMSIS Toolbox configuration
2.1. Clone the Alif VS Code template for Gen 2 silicon (Github repo name “alif_vscode-template”).

This can be found on the Alif Semiconductor Github page [link here]. Clone this template to a

project folder of your choosing on your hard drive.

2.2. After cloning the template file to your project folder, open up a terminal window in that

template folder and execute the command “git submodule update -–init”. This will

load the board library sub-module.

2.3. Run VS Code for the first time by launching Code.exe. Since this installation uses its own local

configuration, the first-time setup wizard will be shown even if there are other VS Code

instances on your machine. Adjust the personalization settings and dismiss the wizard window.

2.4. Click “Open Folder” on the Get Started page and select the template folder extracted in step

2.1 (ensure that you can see several files directly inside of it).

2.5. Click “Yes, I trust the authors” in the pop-up prompt.

2.6. Project includes file with a list of recommended (required for our purposes) extensions, as

notified by the pop-up in the bottom right part of the VS Code window. Click “Install”:

https://github.com/alifsemi/alif_vscode-template
https://github.com/alifsemi

Getting Started with VSCode, GCC, & J-Link

9

User Guide
AUGD0012

2.7. While extensions are being installed, Windows Defender Firewall might raise warnings about

VS Code. Press “Allow access” as network access is required for the connection to the GDB

server:

2.8. Before the project content can be built or debugged, additional configuration is required. Press

F1 to bring focus to the search bar and type “user”. Select “Preferences: Open User Settings

(JSON)”:

2.9. This file controls settings for the VS Code installation, regardless of which project or folder is

selected. As such, these settings only need to be configured once. Add a comma behind the

last entry and add the following lines before the closing brace:

{

 "terminal.integrated.env.windows": {

 "CMSIS_COMPILER_ROOT": "${execPath}/../cmsis-toolbox/etc",

 "CMSIS_PACK_ROOT": "${execPath}/../cmsis-packs",

 "PATH": "${execPath}/../cmsis-toolbox/bin;${execPath}/../ninja;${env:PATH}",

 "SETOOLS_ROOT": "${execPath}/../alif-tools"

 },

 "cortex-debug.armToolchainPath": "C:/Tools/Arm_GNU_12_2_rel1/bin",
 "cortex-debug.JLinkGDBServerPath": "C:/Tools/JLink_V7_82c/JLinkGDBServerCL.exe"

Getting Started with VSCode, GCC, & J-Link

10

User Guide
AUGD0012

}

2.10. The lines above are responsible for setting up the environment variables for the command line

which will be used to run CMSIS Toolbox utilities as well as setting up GDB server and client

paths. CMSIS_COMPILER_ROOT, CMSIS_PACK_ROOT, PATH, and SETOOLS_PATH should all be

specified as above unless different locations were used in step 1.11. Lines starting with

“cortex-debug” should point to the JLinkGDBServerCL.exe file inside the J-Link installation

folder (step 1.6) and to the bin folder inside the directory with the Arm GNU Compiler (step

1.2).

2.11. Press F1 and select “Run Task”. From the list of tasks, select “First-time pack installation”. VS

Code will exercise cpackget to obtain the necessary Alif and Arm pack files. Once completed,

you should see “Pack installation has been completed” message in the console.

2.12. Your VS Code installation and CMSIS Toolbox are now fully configured to build and debug

GCC-based projects for Alif devices. tasks.json file provided inside the .vscode folder in the

project defines few commands to automate clean & build process (accessible under F1->

Tasks: Run Task). Applications are configured using csolution.yaml and cproject.yaml files and

are generated and built with Ctrl + Shift + B combination.

2.13. Press Ctrl + Shift + B combination to generate the content and build the project. At the end of

the successful build, the console window will show the following:

If your project builds correctly and with no errors, you have fully completed your installation and you’re
ready to develop for Alif Ensemble.

Getting Started with VSCode, GCC, & J-Link

11

User Guide
AUGD0012

3. Setting up your Alif Ensemble Development Kit Gen 2
1. To power your DevKit, connect a USB cable from your computer to the “PRG USB” micro-USB

socket on the board.

2. Determine which COM port is connected to the SEUART by following the steps at the beginning
of the Ensemble DevKit User Guide. This can be found on the Customer Files page of the Alif
website [link here]. You will have to log into the website with your Alif credentials to access this
archive as well as other Rev-B silicon and software documentation. Make of note of which COM
port is connected to the SEUART.

3. Connect J-Link debugger to the 19-pin connector in the top center of the CPU board, as shown

below. JTAG debugger connections are available in the middle of the board near the lower
edge. The picture below shows a Segger J-Link with 19-pin Cortex-M adapter connected to J16
on the DevKit which is the 19-pin JTAG-0 connector. Ensure your J-Link is connected to the USB
port on your computer.

https://alifsemi.com/account/

Getting Started with VSCode, GCC, & J-Link

12

User Guide
AUGD0012

4. Opening a CMSIS Toolbox project with Visual Studio Code
1. If you closed VS Code after the previous section, open VS Code and navigate to File -> Open

Folder and select the alif_vscode-template-DEV folder that you downloaded in section 2.1 (you
should see several directories and files inside of it).

2. This is a basic “starting point” project for developing on Alif Ensemble using CMSIS Toolbox. You

should see following files and directories:

• csolution.yaml – describes the whole “solution” (consisting of one or more projects) and
specifies toolchain settings such as compiler and linker properties and build targets.

• cproject.yaml – describes a project – specifies the content to include in the build, e.g.
user sources, libraries, include paths and components from installed CMSIS packs.

• app/main.c – a placeholder for user sources. Additional directories and files can be
specified inside cproject file.

• .vscode folder – provides settings specific to Visual Studio Code for improved
integration. It specifies debug properties, CMSIS Toolbox commands for setup,
generating and building content, additional scripting for Alif Security Toolbox and a list
of recommended extensions to make sure your VS Code installation has everything
needed to develop for Alif Ensemble.

• .alif folder – configuration files used by Alif Security Toolbox.
3. Open main.c inside “app” folder. On the bottom right you will see the active C/C++

Configuration. This correlates to the Cortex M55 core the project is targeting on the Alif
Ensemble device. To build and debug the project on High Efficiency core, click “HP” shown on
the bottom right, then from the drop-down at the top select “HE”. This setting is only visible
when a C file is open.

4. Since the project comes with a set of predefined tasks (defined in .vscode/tasks.json file) to help

you with operating CMSIS Toolbox, you can build the project by executing the build task in one
of the 3 possible ways:

• Press Ctrl+Shift+B key combination.

• Pressing F1 and then selecting “Tasks: Run Build Task”.

• Pressing F1 and then selecting “Tasks: Run Task” followed by “Generate and build with
csolution + cbuild”.

Getting Started with VSCode, GCC, & J-Link

13

User Guide
AUGD0012

5. VS Code will use CMSIS Toolbox to configure and build the project using definitions provided in
the aforementioned .yaml files. At the end of successful build, you should see the following
message in the in the Terminal window:

6. Once the project is built successfully, you are ready to debug it. If this is the first time you have
built this design for the selected core, you need to program the design using the Alif Security
Toolkit. Press F1 and then select “Tasks: Run Task”, then select “Program with Security Toolkit
(select COM port). If you have previously used a Security Toolkit task with this board, you do not
need to select the COM port and can use “Program with Security Toolkit”.

7. You will be prompted to select the COM port for your SEUART adapter, and the script will build
the Alif ATOC image and program it into MRAM. At that point, the program is running, and you
can now debug using the F5 debug function. For subsequent code changes and new builds using
the same core, debugging can be done without performing this step. After the programming
finishes, press the RESET button to execute the program.

If you change which core you are targeting as described in step 3, then you must execute
“Program with Security Toolkit” at least once and then you can debug further changes using only
the F5 debug function.

Getting Started with VSCode, GCC, & J-Link

14

User Guide
AUGD0012

8. Now press F5 to start the debug session. J-Link will download the application image into the Alif
Ensemble SoC and Visual Studio Code will pause the hardware at the first line of main() function.
If you’re having trouble connecting, try power cycling your development board.

9. This project is very basic and toggles the blue LED on and off on each interrupt from the SysTick

timer.

Getting Started with VSCode, GCC, & J-Link

15

User Guide
AUGD0012

10. If you set a breakpoint at line36, the LED will toggle each time you press the continue icon in the
debugger control bar.

11. When you are done debugging, you can stop the debugger and disconnect by pressing the red

square STOP icon on the debugger control bar.

Getting Started with VSCode, GCC, & J-Link

16

User Guide
AUGD0012

5. Adding CMSIS Components to the application
1. When developing your application, you’ll get access to the powerful collection of various CMSIS

components provided by Alif, Arm, Microsoft, and other third parties. Basic set of necessary
components has already been installed in the setup section. Open the cproject.yaml file:

2.
3. Currently the project is configured to only use CMSIS Core and Alif Startup components, but

other common modules have been included and commented out. For example, you could add
the UTIMER driver by placing cursor on line 38 and pressing DELETE to remove the “#”.

4. Pressing Ctrl+Shift+B would then generate the project content and build the project.

Congratulations! You have completed the VS Code/GCC setup process for the Alif Ensemble DevKit.

Getting Started with VSCode, GCC, & J-Link

17

User Guide
AUGD0012

Document History

Version Change Log

1.0 Initial release for Ensemble DevKit with Gen 2 silicon

1.1 Minor edits and formatting

1.2 Changed the link to Alif Security Toolkit for new web structure and link to the Alif VS
Code template to point to the public repo on Github.

1.3 Added instructions on how to download the board library sub-module to the template

