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Deployment of TFLite Models on Alif Semiconductor’s MCUs 
 

Background 
Alif’s MCUs are equipped with one or two “ML islands”. Each of these islands consists of a combination 

of Cortex-M55 and Ethos-U55 NPU (neural processing unit). 

The following document describes the steps how a model, that was trained and converted to a TFLite 

(quantized) format, needs to be further processed so it can take advantage of the NPU inference 

acceleration.  

 

Requirements for the TFLite Model 
As mentioned, we assume at this point that the model was already trained and fully quantized into an 

int-8 format (unsigned or signed). The options for the full integer quantization are: 

1. Post-training quantization, or 

2. Quantization aware training. 

The following code snippet can be used to verify the quantization of the input and output layer: 

interpreter = tf.lite.Interpreter(model_content=tflite_model_quant) 

input_type = interpreter.get_input_details()[0]['dtype'] 

print('input: ', input_type) 

output_type = interpreter.get_output_details()[0]['dtype'] 

print('output: ', output_type) 

 
When running evaluation data through the quantized model, make sure the performance is close to the 

performance of the floating-point model. This can be done using tools such accuracy, confusion matrix, 

precision, recall, f1-score etc. 

 

If the quantized model performs significantly worse compared to the floating-point model, simply re-

running the post-quantization process (with or without slight changes of parameters) can improve the 

outcome. 

Generally, using regularization techniques during the training can improve the model performance 

noticeably. 

 

Optimization for NPU Acceleration 
Once the TFLite model is ready, we need to further optimize it and prepare it, so the NPU has enough 

information to process it. 

 

For this optimization, we use the vela compiler. Vela is an open-source Python tool that compiles a 

TFLite neural network (NN) model into an optimized version that can run on an embedded system 

containing ARM Ethos-U NPU. Using Linux vela can be installed with: 

➢ pip install ethos-u-vela 

For more information on the Vela compiler see this page.  

https://www.tensorflow.org/lite/performance/post_training_integer_quant#convert_using_integer-only_quantization
https://www.tensorflow.org/model_optimization/guide/quantization/training
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-vela
https://pypi.org/project/ethos-u-vela/
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The vela compiler gets as input hardware-specific parameters, which help adjust the optimizations for 

the given hardware. The vela compiler produces estimations for the expected performance once the 

model is deployed on hardware. 

 

 

Examples for Vela Compilation 

Assuming your quantized TFLite model is called “model.tflite” we want to optimize it for one of the two 

versions of Alif’s NPU architectures: The High-Performance ML-Island RTSS-HP or for the High-Efficiency 

ML-Island RTSS-HE.  

 

The call for the RTSS-HP version is: 

vela model.tflite \ 

–-output-dir ./output \ 
--accelerator-config ethos-u55-256 \   

--optimise Performance \ 

--config vela.ini \ 

--system-config Ethos-U55_High_End_Embedded \ 

--memory-mode Shared_Sram 

 
The call for the RTSS-HE version is: 

vela model.tflite \ 

–-output-dir ./output \ 
--accelerator-config ethos-u55-128 \   

--optimise Performance \ 

--config vela.ini \ 

--system-config Ethos-U55_High_End_Embedded \ 

--memory-mode Shared_Sram 

 
The output of the vela compilation in the folder ./output is named “model_vela.tfite”. 

Note: The vela compilation code uses a configuration file vela.ini, which contains (amongst others) 

hardware-specific settings. The content of this ini file for the Alif hardware is listed at the end of this 

document. Vela uses the settings in this ini file to produce performance estimations, when running the 

model on hardware. 

A vela compilation can produce an output like the following: 

 

Network summary for model 

Accelerator configuration               Ethos_U55_128 

System configuration             Ethos_U55_High_End_Embedded 

Memory mode                               Shared_Sram 

Accelerator clock                                   500 MHz 

Design peak SRAM bandwidth                        4.00 GB/s 

Design peak Off-chip Flash bandwidth              0.50 GB/s 

 

Total SRAM used                                   38.52 KiB 

Total Off-chip Flash used                         96.53 KiB 

 

CPU operators = 0 (0.0%) 
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NPU operators = 38 (100.0%) 

 

Average SRAM bandwidth                            1.06 GB/s 

Input   SRAM bandwidth                             0.09 MB/batch 

Weight  SRAM bandwidth                            0.15 MB/batch 

Output  SRAM bandwidth                            0.04 MB/batch 

Total   SRAM bandwidth                             0.28 MB/batch 

Total   SRAM bandwidth             per input       0.28 MB/inference (batch size 1) 

 

Average Off-chip Flash bandwidth      0.35 GB/s 

Input   Off-chip Flash bandwidth                  0.00 MB/batch 

Weight  Off-chip Flash bandwidth                  0.09 MB/batch 

Output  Off-chip Flash bandwidth                  0.00 MB/batch 

Total   Off-chip Flash bandwidth                 0.09 MB/batch 

Total   Off-chip Flash bandwidth  per input       0.09 MB/inference (batch size 1) 

 

Neural network macs                             2822292 MACs/batch 

Network Tops/s                                     0.02 Tops/s 

 

NPU cycles                                        100225 cycles/batch 

SRAM Access cycles                                16940 cycles/batch 

DRAM Access cycles                                    0 cycles/batch 

On-chip Flash Access cycles                          0 cycles/batch 

Off-chip Flash Access cycles                      35776 cycles/batch 

Total cycles                                      132717 cycles/batch 

 

Batch Inference time                  0.27 ms,  3767.41 inferences/s (batch size 1) 

 

Note: If the model contains operations or layers that are not supported by the Ethos-U55, then this 

printout will indicate that those layers are running on CPU instead. 

 

As mentioned, the performance numbers produced by the vela compilation are the result of linear 

calculations using the settings in the vela.ini file. These values can deviate significantly from the 

performance measured on actual hardware. 

 

The next step is to convert the model into a ‘Flatbuffer’ format that can be added to the inference code, 

and all together converted to binaries that can be written directly into memory. 

 

Model Conversion into Flatbuffer Format 
The ‘Flatbuffer’ is basically the model converted into an array of hexadecimal byte values. This array can 
then for example be included as a C header-file with the (C and/or C++) inference code used for this 

application. 

 

On Linux the conversion of the model_vela.tflite file into a hex array can be done using the xxd tool. This 

tool can be installed on Linux with 

➢ sudo apt install -y xxd 
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The conversion of the model file and inserting the hex dump into a C header-file is simply done with the 

following command line call: 

➢ xxd -I output/model_vela.tflite my_network_model.h 

Model File Clean-Up 

Finally, the headline and footer of my_network_model.h need to be adjusted, so the linker knows how 

best to put the data into memory. 

For this, make sure that the model file has the following framing: 

#ifndef NETWORK_MODEL_H 

#define NETWORK_MODEL_H 

const unsigned char network_model[] __attribute__((aligned(16))) = { 

… 
}; 

const unsigned int network_model_len = nnn; 

#endif //NETWORK_MODEL_H 

 
Here “…” indicates a list of comma-separated hex byte values (e.g., 0x20). “nnn” is the size of the model 
array, i.e., the amount of hex byte values between the curly brackets {}. 

 

Prepare a (Static) Inference Input 
The next step is to prepare test input to run through this model for inference.  

A DNN model expects input to be formatted in a specific way, which consists mostly of the following: 

1. Shape the model to the same size as the data the model was trained on. For example, if images 

of (𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑑𝑒𝑝𝑡ℎ) = (255 ∗ 255 ∗ 1) were used during the training, then the 

inference input needs to be shaped to this size as well. 

2. Scale (or normalize) the input the same way as was done during inference. For example, if the 

image pixels were scaled down from 8-bit (0 to 255) to the range of 0 to 1, then also the 

inference input needs to be per pixels divided by 255.  

3. The model we used was int-8 quantized, i.e., the inference input needs to be quantized as well 

using the input-scale and the zero-point values we gained during the quantization of the model. 

 

The input data needs to be converted into a 1-D (‘flat’) array and can be in integer or in hex byte format. 

The final step is to make sure that the header and footer of this input file are aligned with the rest. In 

this case the file can look like this: 

#ifndef INPUT_DATA_H 

#define INPUT_DATA_H 

 

static const int input_data_len = 784; 

static const int8_t input_data[] = { 

  -128, -128, -128, -128, -128, -128, -128, -128, 

… 
  -128, -128, -128, -128, -128, -128, -128, -128 

   

}; 

#endif // INPUT_DATA_H 
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This can be stored in a C header-file such as input_data.h, which can be linked with the C/C++ inference 

code. 

 

For (Static) Inference Prepare an ‘Expected Output’ for Testing 
For validation, it can be useful to compare the output of the inference from the Ethos-U55 with the 

“expected output”. The expected output can be generated running the test input created in “Prepare a 

(Static) Inference Input” after steps 1 to 3 (before the conversion into the 1-D array), using the 

quantized (but not yet vela compiled) model model.tflite.  

It is expected that the output of the quantized model model.tflite is identical to the inference result, 

running the input through the vela optimized model on the Ethos-U55 hardware. 

 

The Expected Output data is put in a header-file (e.g., called expected_output.h) and needs to be 

similarly formatted, as was done for the input data. This allows the expected output to be included into 

the inferencing binaries. 

 

To include the expected output array into the inference code, it can be formatted as follows: 

#ifndef EXPECTED_OUTPUT_DATA_H 

#define EXPECTED_OUTPUT_DATA_H 

 

static const int expected_output_data_len = 10; 

static const int8_t expected_output_data[] = { 

  -128, -128, 127, -128, -128, -128, -128, -128, 

  -128, -128  

}; 

#endif // EXPECTED_OUTPUT_DATA_H 
 

(Note: The expected output array here is given as an example). 

 

As the output is generated running a scaled and quantized input through a quantized model, the output 

is already quantized and scaled. Hence, if it is desired to get the “original” bit-depth, an additional 

calculation per output feature needs to be done to de-quantize and rescale the values back. 

 

 

Running Inference on the MCU 
With model, input and expected output as 1-D arrays, prepared as described above, we can write the C-

code, for the actual inference routine. Note that this code will generally be a combination of C and C++ 

code, as TensorFlow lite is written mostly in C++ and needs to be included in the code.  

 

The C-code for the inference needs to include the TensorFlow runtime libraries and other optimization 

functions with this header: 

#include "tensorflow/lite/micro/micro_error_reporter.h" 

#include "tensorflow/lite/micro/micro_interpreter.h" 

#include "tensorflow/lite/micro/micro_utils.h" 

#include "tensorflow/lite/micro/testing/micro_test.h" 

#include "tensorflow/lite/schema/schema_generated.h" 

#include "tensorflow/lite/micro/micro_mutable_op_resolver.h" 
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Note, the last include “micro_mutable_op_resolver.h”. During the development phase and if the 

working memory is large enough, this can be replaced by: 

#include "tensorflow/lite/micro/all_ops_resolver.h 

 
The “ops resolver” is what tells the NPU how to process various mathematical operations that are 

required to transform the input to the output (inference). “all_ops_resolver.h” contains all operations 

that have been implemented so far, and new ones are added to the TensorFlow repo continuously.  

 

However, a given model requires only a limited set of operations that were used to design the model. If 

all operations required for the model are known, then we can instead import the 

“micro_mutable_op_resolver.h” file, which allows us to only pick the ops that are really required. 

This can reduce the memory footprint of an application significantly. 

 

Here is an example for a model, which is supposed to run on EthosU, contains a depth-wise convolution, 

a Conv-2D, an average-pooling, an add, a reshape and a softmax layer: 

  tflite::MicroMutableOpResolver<7> micro_op_resolver; 

  //tell tensorflow micro to add ethos-u operator    

  micro_op_resolver.AddEthosU(); 

  micro_op_resolver.AddDepthwiseConv2D(); 

  micro_op_resolver.AddConv2D(); 

  micro_op_resolver.AddAveragePool2D(); 

  micro_op_resolver.AddAdd(); 

  micro_op_resolver.AddReshape(); 

  micro_op_resolver.AddSoftmax(); 
Note that the number between the brackets <> following MicroMutableOpResolver (here 7) needs to be 

equal or larger than the added operator layers. 

 

Next, we need to include model, input and expected output files with the following: 

#include "my_network_model.h" 

#include "input_data.h" 

#include "expected_output_data.h" 
 

An essential value, that might have to be determined experimentally, is the size of the tensor-arena: 

#define TENSOR_ARENA_SIZE (70 * 1024) 
 

The value here is given as an example. This area of memory is used to store the model’s input, output, 

and intermediate tensors. This value doesn’t have to be exact, so we can start with a larger value and 

reduce it to optimize the memory footprint. 

 

 

Continuous Inference on Changing Input 
The input and expected-output files (input_data.h and expected_output_data.h) are placed into 

memory locations specified in the linker-script. In the ARM libraries (e.g., in ml-embedded-evaluation-

kit) the linker-script is called platform.ld and for the corstone-300 evaluation bord can be found in 

dependencies/core-platform/targets/corstone-300/. 
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The location for the input data is specified in the linker-script with input_data_sec, the output of the 

inference is specified with output_data_sec and the expected output is specified there with 

expected_output_data_sec.  

 

With the starting addresses and the size of each block of those memory locations specified, we can 

convert the single inference into an inferencing loop.  

 

We need for continuous inference a pipeline, that continuously (or interrupt controlled) generates new 

input features (or frames), converts, and shapes the input as described earlier and puts the input into 

the specified input_data_sec. Once the input is written into the memory, the inferencing loop (ideally 

interrupt-controlled) picks the new input data, runs it through the NPU and places the output into the 

memory location of the output_data_sec. 

 

Once the output data is written, it can be read out from the known memory address and further 

processed as desired, making the NPU ready for the next incoming data. 

 

 

Summary 
This document has given an overview of all steps required for the conversion of a quantized model into 

the final format required for the deployment on the Ethos-U55. 
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Appendix 

Vela.ini 

; 

; SPDX-FileCopyrightText: Copyright 2021 Arm Limited and/or its affiliates <open-

source-office@arm.com> 

; SPDX-License-Identifier: Apache-2.0 

; 

; Licensed under the Apache License, Version 2.0 (the "License"); 

; you may not use this file except in compliance with the License. 

; You may obtain a copy of the License at 

; 

;     http://www.apache.org/licenses/LICENSE-2.0 

; 

; Unless required by applicable law or agreed to in writing, software 

; distributed under the License is distributed on an "AS IS" BASIS, 

; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

; See the License for the specific language governing permissions and 

; limitations under the License. 

; 

 

; ----------------------------------------------------------------------------- 

; Vela configuration file 

 

; ----------------------------------------------------------------------------- 

; System Configuration 

 

; Ethos-U55 High-End Embedded: SRAM (4 GB/s) and Flash (0.5 GB/s) 

[System_Config.Ethos_U55_High_End_Embedded] 

core_clock=500e6 

axi0_port=Sram 

axi1_port=OffChipFlash 

Sram_clock_scale=1.0 

Sram_burst_length=32 

Sram_read_latency=32 

Sram_write_latency=32 

OffChipFlash_clock_scale=0.125 

OffChipFlash_burst_length=128 

OffChipFlash_read_latency=64 

OffChipFlash_write_latency=64 

 

; Ethos-U65 High-End: SRAM (16 GB/s) and DRAM (3.75 GB/s) 

[System_Config.Ethos_U65_High_End] 

core_clock=1e9 

axi0_port=Sram 

axi1_port=Dram 

file:///C:/Users/SteveSharp/Documents/Alif%20Semi/templates/www.alifsemi.com


AI/ML Design Flows 

11 
 

White Paper           Preliminary Information 

AWPR0006                 Alif Semiconductor – Proprietary and Confidential 

 

Sram_clock_scale=1.0 

Sram_burst_length=32 

Sram_read_latency=32 

Sram_write_latency=32 

Dram_clock_scale=0.234375 

Dram_burst_length=128 

Dram_read_latency=500 

Dram_write_latency=250 

; ----------------------------------------------------------------------------- 

; Memory Mode 

 

; Shared SRAM: the SRAM is shared between the Ethos-U and the Cortex-M software 

; The non-SRAM memory is assumed to be read-only 

[Memory_Mode.Shared_Sram] 

const_mem_area=Axi1 

arena_mem_area=Axi0 

cache_mem_area=Axi0 

 

; Dedicated SRAM: the SRAM (384KB) is only for use by the Ethos-U 

; The non-SRAM memory is assumed to be read-writeable 

[Memory_Mode.Dedicated_Sram] 

const_mem_area=Axi1 

arena_mem_area=Axi1 

cache_mem_area=Axi0 

arena_cache_size=393216 
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