
Deploying NVIDIA TAO
Models on Alif Hardware
With Edge Impulse

https://alifsemi.com/

2

The NVIDIA TAO toolkit enables embedded engineers to use established
and trained Machine Learning (ML) models and modify them slightly to
better fit a particular application. This ability allows users to leverage
a large library of model architectures for image classification, object
detection, and segmentation as well as various task-based models
without creating complex models from scratch. While the toolkit concept
is appealing and has the potential to massively shorten the design
cycle around prototypes, in reality, it has been difficult to deploy these
modified models in non-NVIDIA hardware with ease. In theory, other
32-bit MCUs should be able to support these models; however, MCUs
without a dedicated NPU, designers are facing an array of challenges.

Edge Impulse has created an IDE for building TAO models and mapping
them to supported hardware including a number of GPUs, NPUs, and
MCUs. Alif Semiconductor’s Ensemble® family of microcontrollers, offers
a dedicated NPU (Arm® Ethos™-U55) to run complex AI/ML workloads
and has partnered with Edge Impulse to allow engineers to map and
accelerate their modified ML algorithm on Alif’s hardware.

Introduction

Photo credit: Adobe Stocks

https://as1.ftcdn.net/v2/jpg/06/36/44/86/1000_F_636448680_Tt9mDZpzUd1gupuddt0ei1epG6BUKQOs.jpg

3

Traditionally deep learning models are deployed in the cloud, where
massive banks of servers are able to adequately train models and
process incoming data. Many IoT applications have leveraged AI and
the cloud to wirelessly shuttle data from end-nodes so the information
could be processed entirely in the cloud. However, this general “sensor-
node-to-gateway-to-cloud” architecture has limitations. Depending
upon the application, the power-constrained end node might have to
continuously transmit wirelessly; this process is power-hungry and will
inevitably drain the often battery-powered device. Moreover, the round-
trip time taken from the edge (end-device) to the cloud and back is quite
high, causing large latencies that may be unacceptable—especially in
more safety-critical applications.

Edge computing attempts to shift some of that compute burden from
cloud back to the edge device to optimize both the power and timing
constraints. This shift could, for example, be used for more autonomous
robotics that require more immediate processing/feedback such as
drones, autonomous vehicles, automated guided vehicles (AGVs), and
more. Other applications could include earbuds that locally process
complex audio DSP such as wake word detection, keyword detection,
noise cancellation, etc.

Using inference at the edge device to more rapidly run data points
into the ML model and calculate the necessary outputs can prove
challenging. The process relies on an established and trained ML
model—the larger the data set used to train the ML model, the more
accurately it accomplishes its specific tasks. However, building a large
dataset and labeling images in, for example, object detection models, is
a time-consuming and cumbersome task. One solution to optimize this
process relies on platforms such as NVIDIA TAO.

Moving Compute From the Cloud to the Edge

Photo credit: Adobe Stocks

https://as2.ftcdn.net/v2/jpg/05/83/68/47/1000_F_583684780_MTCg9K07113yxQRZ7bPSznAnl3VKLVYO.jpg

4

What is NVIDIA TAO?

NVIDIA TAO—Train Adapt Optimize—leverages transfer learning by
using existing pretrained, weighted AI models with custom data to
adapt to a customer’s specific synthetic data. One example is using an
established object-detection model that typically performs on images
in well-lit environments, and optimizing it to function well with custom
infrared images (Figure 1).

The use of transfer learning weights side steps the process of building a
deep learning model from scratch, a process that typically involves large-
scale data collection with millions of data points, labeling, and training
to effectively fine-tune a model. The toolkit is built on TensorFlow and
PyTorch to train, fine-tune, prune, quantize, and export more purpose-
built models. The NVIDIA TAO provides a simple command line interface
to train a deep-learning model for computer vision (CV) tasks including
classification, object detection, instance segmentation, and semantic
segmentation.

Figure 1: The TAO workflow diagram involves data, training, and deployment.

The Problem: Deploying ML on 32-bit MCUs

The application space for using ML at the embedded edge is growing, and
new platforms are being deployed to support this with various hardware
including ASICs, MPUs, GPUs, FPGAs, CPUs, MCUs, DSP chips, and many
multi-core architectures as well. Embedded developers generally prefer
running their programs on MCUs for ease of programming, small form
factor, and reduced power consumption. However, there are factors that
limit the average 32-bit MCU’s ability to seamlessly run ML inference.
MCUs and the cores within them will execute tasks serially, making
the processor face several bottlenecks in performance (e.g., memory
wall, Von Neumann). Moreover, the increase in time it takes to process
and receive an “answer” causes the device to remain “on” for longer
periods of time and unable to revert back to a low-power sleep mode.
The increased processing time, in turn, yields a sharp increase in power
consumption—an unacceptable outcome in many battery-powered
applications.

It is a challenging task to migrate models down to operate efficiently
on the 32-bit MCU architecture. And, while the low-code, open-source
workflow of NVIDIA TAO is appealing and has the potential to help with
this issue, these models were historically difficult to run on anything
other than NVIDIA hardware— and difficult to run efficiently on 32-bit
MCUs.

https://developer.nvidia.com/tao-toolkit-usecases-whitepaper/2-adapting-different-camera-types#21-Industry-problem
https://developer.nvidia.com/tao-toolkit-usecases-whitepaper/2-adapting-different-camera-types#21-Industry-problem

5

The Benefits of the Alif’s Ensemble Family of MCUs

The Ensemble family of MCUs starts with the E1, a single-core Arm®
Cortex®-M55 with an optional dedicated Ethos-U55 microNPU for
accelerating ML workloads. As shown in Figure 2, the number of cores
can be scaled up while also introducing cores that run at higher clock
frequencies to process data more quickly. The E5 and E7 are known as
fusion processors that combine MCUs, NPUs, and MPU(Cortex-A32) in
a single package. The more cores, the faster the ability of the MCU to
process the ML tasks. Alif has introduced NPUs that can perform parallel
computations instead of serializing math through layers, including the
most basic Ensemble MCUs.

Figure 2: The Alif Semiconductor Ensemble family of MCUs.

Since Alif Semiconductor is using modern technology, the Ensemble
family can afford to integrate much more memory; the traditional MCU
typically carries ~256 kB of RAM whereas the Ensemble carries up to 14
MB of RAM on die. This advantage loosens the constraints that designers
typically face when mapping their ML algorithms to hardware. Other Alif
families such as the Balleto™ family of MCUs will also incorporate the
Ethos U55 NPU while also integrating BLE 5.3 and IEEE 802.15.4 radio
models, removing the typical two-chip solution for most solutions that
incorporate wireless transmission. All of these SoCs will also host a wide
variety of peripherals to better suit the embedded edge application.

The combined benefits push ML tasks to run faster on an Alif device.
Speed is an important aspect of the process, since inference workloads
on MCUs will generally force it to run at 100% utilization, driving up
power consumption. Shortening the amount of time it takes to get an
“answer” allows the device to quickly switch back to the desired low-
power mode to extend battery life. Battery life is a uniquely challenging
aspect of portable edge devices and wearables with small form factors
such as fitness trackers, sleep monitoring devices, and wireless earbuds.

Using Edge Impulse to Deploy TAO Models

Edge Impulse gives a complete integrated development environment
(IDE) for building TAO models including data collection, training and
validating models, and deployment to a wide range of devices from
MCUs to higher-end GPUs. The entire platform offers firmware ready to
be flashed onto the hardware of choice as well as established binaries
for fully-supported development boards. Edge Impulse offers the tools
to create digital twins, synthetic datasets, and virtual model testing
environments.

Alif Semiconductor has partnered with Edge Impulse so that users,
from engineers with limited ML knowledge and programming ability to
the more seasoned developers, could use the Edge Impulse Studio or
Python SDK to deploy their fine-tuned ML model to the Alif Ensemble
MCU. This Ensemble series offers dedicated NPUs (Ethos-U55) to run
complex AI/ML workloads.

https://docs.edgeimpulse.com/docs/tools/edge-impulse-python-sdk#profile

Car velocity: the vehicle could be stationary or moving

Camera positioning: the camera could be positioned on a pole at
different angles

Time of day: Depending upon where the sun is, the camera may
receive glare that prevents it from visualizing the license plates
passing through its field of view (FoV)

6

The partnership with Alif Semiconductor and Edge Impulse supports, for
instance, creating a license plate detection and decoding algorithm on
the Alif Ensemble MCU. The NVIDIA TAO toolkit has a number of models
that can be fine-tuned for this specific purpose. The TrafficCamNet and
DashCamNet models can be used to detect vehicles, while the multi-
purpose detection (MPD) mode can be used to detect license plates,
and the license plate recognition (LPR) model, to translate images to
text. The challenge is to make sure the algorithms work in the images’
specific environment. There are a number of factors that could cause
the ML model to fail:

Using Edge Impulse Studio to Run a License
Plate Detection Algorithm on the Alif Ensemble
MCU

The model might need to be adapted for these factors to obtain the
level of accuracy required. In order to do this users are able to create
a synthesized dataset. The general workflow can be seen in Figure 3.

Figure 3: The workflow to train a license plate detection model using the NVIDIA TAO YOLOV3
pre-trained model integrated into Edge Impulse.

Create a Custom Dataset

After the board is connected and users login to the Edge Impulse
Dashboard, users can begin creating a custom dataset by clicking
“Dataset.” “Data collection” can begin by capturing a series of images
of license plates via a smartphone, webcam, or a connected Ensemble
AI/ML Appkit and manually labeling some, but not all, of these images.
Users that already have images can upload them by clicking on “Data
acquisition” and adding data. The bigger the dataset and the more
accurately labeled it is, the more accurate the model will be with the
given camera positions, lighting, and vehicle velocities.

The model is then put together under “Impulse design,” where “Image
data” will include the new images for pre-processing. At this stage,
users can choose two “blocks:” an image processing block and an object
detection learning block. Other features can be entered in this step,
such as a post estimation block to train a classifier. In the learning block,
the NVIDIA TAO model has the right architecture to do that (Figure 4).

The challenge in these applications is not only finding the right hardware
to run inference efficiently, but procuring an integrated solution that
suits the end-applications form factor.

7

Figure 4: Edge Impulse window for selecting the NVIDIA TAO model.

Figure 5: The Edge Impulse on-device performance shown when running inference on the
connected Alif AI/ML kit.

Navigating to the “Object detection” button will lead to the various
neural network settings that can be modified. These include parameters
such as “Number of training cycles,” “Learning rate,” and 𝛼. Finally, when
it comes time to train the model, Edge Impulse will spin up a GPU in its
cluster and load the NVIDIA TAO containers to combine them with the
custom dataset that was originally created. This process is done on the
cloud in order to train the algorithm more efficiently.

At this point, there are two ways to view the data: in a 2D map under
“Feature explorer” or as “On-device performance.” The “Feature
explorer” uses the embedding of the network to visualize clusters of
data that show obvious similarities, e.g., license plate by state, license
plate by number, similar vehicle, etc. Furthermore users can view the
estimated inference time as well as RAM and flash usage under “On-
device performance” (Figure 5).

Finding the Best ML Model for the MCU

Further optimizations can occur with an AutoML tool called the “EON
Tuner.” This tool enables users to find the most optimal embedded ML
model for the application within the constraints of the Alif target device.
Figure 6 shows the EON Tuner tool being used to find the most ideal
model to run a keyword spotting algorithm on a Cortex-M4 running at
80 MHz including its respective memory constraints.

Figure 6: EON Tuner tool showing the best NVIDIA TAO models available to run most efficiently
on the target device.

8

Deployment to Alif Ensemble Device

The user can tune the model for the underlying MCU architecture: the
Alif Ensemble MCU with an embedded NPU. This key step allows users
to deploy directly to the Alif MCU target device with zero external
dependencies (Figure 7). A number of deployment options are available
for Alif hardware on Edge Impulse. Once deployed, Edge Impulse will
provide a .zip file that contains the flashing utility and firmware for the
Ensemble AI/ML Appkit.

Figure 7: Deployment to the Alif AI/ML Kit Gen2 HP core via the Edge Impulse Studio.

Photo credit: Adobe Stocks

https://docs.edgeimpulse.com/docs/edge-ai-hardware/mcu-+-ai-accelerators/alif-ensemble
https://docs.edgeimpulse.com/docs/edge-ai-hardware/mcu-+-ai-accelerators/alif-ensemble
https://as1.ftcdn.net/v2/jpg/05/33/67/12/1000_F_533671242_f1rwWTgRIjLoQ9coRBjRLRqFtpPtyxAK.jpg

Conclusion

More and more applications are cropping up
that require computing at the edge. In order
to adequately process these complex ML
algorithms, it is critical to have the hardware
that can accelerate these workloads. However,
this acceleration brings a challenge: many
solutions that allow for parallel compute
capability are often too large and are too
catered for a particular application (ASIC).
MCUs offer many advantages for embedded
engineers, but it is difficult to perform
inference on these devices without running
them too hard. Alif offers a series of MCUs with
multiple cores, a wide range of peripherals,
and embedded NPUs to run ML workloads as
efficiently as possible in an integrated MCU
platform. The partnership with Edge Impulse
allows users to leverage pretrained models
and adapt them to their specific edge task
with an intuitive GUI.

https://alifsemi.com/

