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The NVIDIA TAO toolkit enables embedded engineers to use established 
and trained Machine Learning (ML) models and modify them slightly to 
better fit a particular application. This ability allows users to leverage 
a large library of model architectures for image classification, object 
detection, and segmentation as well as various task-based models 
without creating complex models from scratch. While the toolkit concept 
is appealing and has the potential to massively shorten the design 
cycle around prototypes, in reality, it has been difficult to deploy these 
modified models in non-NVIDIA hardware with ease. In theory, other 
32-bit MCUs should be able to support these models; however, MCUs 
without a dedicated NPU, designers are facing an array of challenges. 

Edge Impulse has created an IDE for building TAO models and mapping 
them to supported hardware including a number of GPUs, NPUs, and 
MCUs. Alif Semiconductor’s Ensemble® family of microcontrollers, offers 
a dedicated NPU (Arm® Ethos™-U55) to run complex AI/ML workloads 
and has partnered with Edge Impulse to allow engineers to map and 
accelerate their modified ML algorithm on Alif’s hardware.

Introduction
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Traditionally deep learning models are deployed in the cloud, where 
massive banks of servers are able to adequately train models and 
process incoming data. Many IoT applications have leveraged AI and 
the cloud to wirelessly shuttle data from end-nodes so the information 
could be processed entirely in the cloud. However, this general “sensor-
node-to-gateway-to-cloud” architecture has limitations. Depending 
upon the application, the power-constrained end node might have to 
continuously transmit wirelessly; this process is power-hungry and will 
inevitably drain the often battery-powered device. Moreover, the round-
trip time taken from the edge (end-device) to the cloud and back is quite 
high, causing large latencies that may be unacceptable—especially in 
more safety-critical applications. 

Edge computing attempts to shift some of that compute burden from 
cloud back to the edge device to optimize both the power and timing 
constraints. This shift could, for example, be used for more autonomous 
robotics that require more immediate processing/feedback such as 
drones, autonomous vehicles, automated guided vehicles (AGVs), and 
more. Other applications could include earbuds that locally process 
complex audio DSP such as wake word detection, keyword detection, 
noise cancellation, etc. 

Using inference at the edge device to more rapidly run data points 
into the ML model and calculate the necessary outputs can prove 
challenging. The process relies on an established and trained ML 
model—the larger the data set used to train the ML model, the more 
accurately it accomplishes its specific tasks. However, building a large 
dataset and labeling images in, for example, object detection models, is 
a time-consuming and cumbersome task. One solution to optimize this 
process relies on platforms such as NVIDIA TAO.

Moving Compute From the Cloud to the Edge
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What is NVIDIA TAO?

NVIDIA TAO—Train Adapt Optimize—leverages transfer learning by 
using existing pretrained, weighted AI models with custom data to 
adapt to a customer’s specific synthetic data. One example is using an 
established object-detection model that typically performs on images 
in well-lit environments, and optimizing it to function well with custom 
infrared images (Figure 1). 

The use of transfer learning weights side steps the process of building a 
deep learning model from scratch, a process that typically involves large-
scale data collection with millions of data points, labeling, and training 
to effectively fine-tune a model. The toolkit is built on TensorFlow and 
PyTorch to train, fine-tune, prune, quantize, and export more purpose-
built models. The NVIDIA TAO provides a simple command line interface 
to train a deep-learning model for computer vision (CV) tasks including 
classification, object detection, instance segmentation, and semantic 
segmentation.

Figure 1: The TAO workflow diagram involves data, training, and deployment.

The Problem: Deploying ML on 32-bit MCUs

The application space for using  ML at the embedded edge is growing, and 
new platforms are being deployed to support this with various hardware 
including ASICs, MPUs, GPUs, FPGAs, CPUs, MCUs, DSP chips, and many 
multi-core architectures as well. Embedded developers generally prefer 
running their programs on MCUs for ease of programming, small form 
factor, and reduced power consumption.  However, there are factors that 
limit the average 32-bit MCU’s ability to seamlessly run ML inference. 
MCUs and the cores within them will execute tasks serially, making 
the processor face several bottlenecks in performance (e.g., memory 
wall, Von Neumann). Moreover, the increase in time it takes to process 
and receive an “answer” causes the device to remain “on” for longer 
periods of time and unable to revert back to a low-power sleep mode. 
The increased processing time, in turn, yields a sharp increase in power 
consumption—an unacceptable outcome in many battery-powered 
applications.

It is a challenging task to migrate models down to operate efficiently 
on the 32-bit MCU architecture. And, while the low-code, open-source 
workflow of NVIDIA TAO is appealing and has the potential to help with 
this issue, these models were historically difficult to run on anything 
other than NVIDIA hardware— and difficult to run efficiently on 32-bit 
MCUs.

https://developer.nvidia.com/tao-toolkit-usecases-whitepaper/2-adapting-different-camera-types#21-Industry-problem
https://developer.nvidia.com/tao-toolkit-usecases-whitepaper/2-adapting-different-camera-types#21-Industry-problem
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The Benefits of the Alif’s Ensemble Family of MCUs

The Ensemble family of MCUs starts with the E1, a single-core Arm® 
Cortex®-M55 with an optional dedicated Ethos-U55 microNPU for 
accelerating ML workloads. As shown in Figure 2, the number of cores 
can be scaled up while also introducing cores that run at higher clock 
frequencies to process data more quickly. The E5 and E7 are known as 
fusion processors that combine MCUs, NPUs, and MPU(Cortex-A32) in 
a single package. The more cores, the faster the ability of the MCU to 
process the ML tasks. Alif has introduced NPUs that can perform parallel 
computations instead of serializing math through layers, including the  
most basic Ensemble MCUs.

Figure 2: The Alif Semiconductor Ensemble family of MCUs.

Since Alif Semiconductor is using modern technology, the Ensemble 
family can afford to integrate much more memory; the traditional MCU 
typically carries ~256 kB of RAM whereas the Ensemble carries up to 14 
MB of RAM on die. This advantage loosens the constraints that designers 
typically face when mapping their ML algorithms to hardware. Other Alif 
families such as the Balleto™ family of MCUs will also incorporate the 
Ethos U55 NPU while also integrating BLE 5.3 and IEEE 802.15.4 radio 
models, removing the typical two-chip solution for most solutions that 
incorporate wireless transmission. All of these SoCs will also host a wide 
variety of peripherals to better suit the embedded edge application. 

The combined benefits push ML tasks to run faster on an Alif device. 
Speed is an important aspect of the process, since inference workloads 
on MCUs will generally force it to run at 100% utilization, driving up 
power consumption. Shortening the amount of time it takes to get an 
“answer” allows the device to quickly switch back to the desired low-
power mode to extend battery life. Battery life is a uniquely challenging 
aspect of portable edge devices and wearables with small form factors 
such as fitness trackers, sleep monitoring devices, and wireless earbuds. 

Using Edge Impulse to Deploy TAO Models

Edge Impulse gives a complete integrated development environment 
(IDE) for building TAO models including data collection, training and 
validating models, and deployment to a wide range of devices from 
MCUs to higher-end GPUs. The entire platform offers firmware ready to 
be flashed onto the hardware of choice as well as established binaries 
for fully-supported development boards. Edge Impulse offers the tools 
to create digital twins, synthetic datasets, and virtual model testing 
environments. 

Alif Semiconductor has partnered with Edge Impulse so that users, 
from engineers with limited ML knowledge and programming ability to 
the more seasoned developers, could use the Edge Impulse Studio or 
Python SDK to deploy their fine-tuned ML model to the Alif Ensemble 
MCU. This Ensemble series offers dedicated NPUs ( Ethos-U55) to run 
complex AI/ML workloads.

https://docs.edgeimpulse.com/docs/tools/edge-impulse-python-sdk#profile


Car velocity: the vehicle could be stationary or moving

Camera positioning: the camera could be positioned on a pole at 
different angles

Time of day: Depending upon where the sun is, the camera may 
receive glare that prevents it from visualizing the license plates 
passing through its field of view (FoV)
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The partnership with Alif Semiconductor and Edge Impulse supports, for 
instance, creating a license plate detection and decoding algorithm on 
the Alif Ensemble MCU. The NVIDIA TAO toolkit has a number of models 
that can be fine-tuned for this specific purpose. The TrafficCamNet and 
DashCamNet models can be used to detect vehicles, while the multi-
purpose detection (MPD) mode can be used to detect license plates, 
and the license plate recognition (LPR) model, to translate images to 
text. The challenge is to make sure the algorithms work in the images’ 
specific environment. There are a number of factors that could cause 
the ML model to fail:

Using Edge Impulse Studio to Run a License 
Plate Detection Algorithm on the Alif Ensemble
MCU

The model might need to be adapted for these factors to obtain the 
level of accuracy required. In order to do this users are able to create 
a synthesized dataset. The general workflow can be seen in Figure 3.

Figure 3: The workflow to train a license plate detection model using the NVIDIA TAO YOLOV3
pre-trained model integrated into Edge Impulse.

Create a Custom Dataset

After the board is connected and users login to the Edge Impulse 
Dashboard, users can begin creating a custom dataset by clicking 
“Dataset.” “Data collection” can begin by capturing a series of images 
of license plates via a smartphone, webcam, or a connected Ensemble 
AI/ML Appkit and manually labeling some, but not all, of these images. 
Users that already have images can upload them by clicking on “Data 
acquisition” and adding data. The bigger the dataset and the more 
accurately labeled it is, the more accurate the model will be with the 
given camera positions, lighting, and vehicle velocities. 

The model is then put together under “Impulse design,” where “Image 
data” will include the new images for pre-processing. At this stage, 
users can choose two “blocks:” an image processing block and an object 
detection learning block. Other features can be entered in this step, 
such as a post estimation block to train a classifier. In the learning block, 
the NVIDIA TAO model has the right architecture to do that (Figure 4).

The challenge in these applications is not only finding the right hardware 
to run inference efficiently, but procuring an integrated solution that 
suits the end-applications form factor.
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Figure 4: Edge Impulse window for selecting the NVIDIA TAO model.

Figure 5: The Edge Impulse on-device performance shown when running inference on the
connected Alif AI/ML kit.

Navigating to the “Object detection” button will lead to the various 
neural network settings that can be modified. These include parameters 
such as “Number of training cycles,” “Learning rate,” and 𝛼. Finally, when 
it comes time to train the model, Edge Impulse will spin up a GPU in its 
cluster and load the NVIDIA TAO containers to combine them with the 
custom dataset that was originally created. This process is done on the 
cloud in order to train the algorithm more efficiently. 

At this point, there are two ways to view the data: in a 2D map under 
“Feature explorer” or as “On-device performance.” The “Feature 
explorer” uses the embedding of the network to visualize clusters of 
data that show obvious similarities, e.g., license plate by state, license 
plate by number, similar vehicle, etc. Furthermore users can view the 
estimated inference time as well as RAM and flash usage under “On-
device performance” (Figure 5).

Finding the Best ML Model for the MCU

Further optimizations can occur with an AutoML tool called the “EON 
Tuner.” This tool enables users to find the most optimal embedded ML 
model for the application within the constraints of the Alif target device. 
Figure 6 shows the EON Tuner tool being used to find the most ideal 
model to run a keyword spotting algorithm on a Cortex-M4 running at 
80 MHz including its respective memory constraints.

Figure 6: EON Tuner tool showing the best NVIDIA TAO models available to run most efficiently
on the target device.
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Deployment to Alif Ensemble Device

The user can tune the model for the underlying MCU architecture: the 
Alif Ensemble MCU with an embedded NPU. This key step allows users 
to deploy directly to the Alif MCU target device with zero external 
dependencies (Figure 7). A number of deployment options are available 
for Alif hardware on Edge Impulse. Once deployed, Edge Impulse will 
provide a .zip file that contains the flashing utility and firmware for the 
Ensemble AI/ML Appkit.

Figure 7: Deployment to the Alif AI/ML Kit Gen2 HP core via the Edge Impulse Studio.
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Conclusion

More and more applications are cropping up 
that require computing at the edge. In order 
to adequately process these complex ML 
algorithms, it is critical to have the hardware 
that can accelerate these workloads. However, 
this acceleration brings  a challenge: many 
solutions that allow for parallel compute 
capability are often too large and are too 
catered for a particular application (ASIC). 
MCUs offer many advantages for embedded 
engineers, but it is difficult to perform 
inference on these devices without running 
them too hard. Alif offers a series of MCUs with 
multiple cores, a wide range of peripherals, 
and embedded NPUs to run ML workloads as 
efficiently as possible in an integrated MCU 
platform. The partnership with Edge Impulse 
allows users to leverage pretrained models 
and adapt them to their specific edge task 
with an intuitive GUI.

https://alifsemi.com/

